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When the impedance is measured on a battery, an inductive impedance is often observed in a high 
frequency range. This inductance is frequently related to the cell geometry and electrical leads. 
However, certain authors claimed that this inductance is due to the concentration distribution of 
reacting species through the pores of battery electrodes. Their argument is based on a paper in which 
a fundamental error was committed. Hence, the impedance is re-calculated on the basis of the same 
principle. The model shows that though the diffusion process plays an outstanding role, the overall 
reaction rate is never completely limited by this process. The faradaic impedance due to the concen- 
tration distribution is capacitive. Therefore, the inductive impedance observed on battery systems 
cannot be, by any means, attributed to the concentration distribution inside the pores. Little frequency 
distribution is found and the impedance is close to a semi-circle. Therefore depressed impedance 
diagrams in porous electrodes without forced convection cannot be ascribed to either a Warburg nor a 
Warburg-de Levie behaviour. 

Nomenclature 

A 
B 
b 
C(x) 

Co 

AC 

iz2xcI 
D 
E 
AE 

IAE[ 
F 
F(x) 
f 
g(x) 
I 

DI ACI (mole cm s -1) 
/co + K[AC[ (mole cm s -1) 
Tafel coefficient (V -1) 
Concentration of S in a pore at depth x 
(mole cm -3) 
Concentration of S in the solution bulk 
(mole cm -3) 
C(x) change under a voltage perturbation 
(mole cm -3) 
Amplitude of A C (mole cm -3) 
Diffusion coefficient (cm 2 s -1) 
Electrode potential (V) 
Small perturbation in E namely a sine-wave 
signal (V) 
Amplitude of AE (V) 
Faraday constant (96500 A s tool -1) 
Space separate variable for C 
Frequency in Hz (s -1) 
K'C(x) [ AE[ (mole cm s -1) 
Apparent current density (Acm -2) 

/st Steady-state current per unit surface of pore 
aperture (A cm -2) 

j Imaginary unit [(-- 1) 1/2] 
K Pseudo-homogeneous rate constant (s -a) 
K'  Potential derivative of K, dK/dE (s -1V -1) 
K* Heterogeneous reaction rate constant 

(cm s-l) 
L Pore depth (cm) 
n Reaction order 
P Reaction product 
p Parameter for F(x), see Equation 13 
q Parameter for F(x), see Equation 13 
Re Electrolyte resistance (ohm cm) 
Rp Polarization resistance per unit surface of 

pore aperture (ohm cm 2) 
Rt Charge transfer resistance per unit surface 

of pore aperture (ohm cm 2) 
S Reacting species 
S a Total surface of pore apertures (cm 2) 
So Geometrical surface area 
Sp Developed surface area of porous electrode 

per unit volume (cm 2 cm -3) 
s Concentration gradient (mole cm-3 cm-~) 
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t Time 
U Ohmic drop 
x Distance from pore aperture (cm) 
Z Faradaic impedance per unit surface of pore 

aperture (ohm cm 2) 
Z x Local impedance per unit pore length 

(ohm cm 3) 

z Charge transfer number 
c~ Porosity 

Thickness of Nernst diffusion layer 
X Penetration depth of reacting species (cm) 
g Penetration depth of a.c. signal determined 

by the potential distribution (cm) 
p Electrolyte (solution) resistivity (ohm cm) 
~o Flow of S at the pore aperture 

(mole cm 2 s -1) 

co Angular freqeuncy of a.c. signal, 27rf(s -1) 
P Integration constant 

1. Introduction 

In many cases, the impedance of battery systems exhibits an inductive behaviour at relatively high 
frequencies [ 1-8]. This inductance is often attributed to the battery cell geometry, electrical leads and 
connectors [1-3, 5]. Gutman [4], however, linked this phenomenon to a viscoelastic property of the 
electrolyte. But the frequency range at which the inductance is observed depends on the magnitude of 
the impedance and hence on the battery capacity [9]. Furthermore, on a flat electrode immersed in the 
same battery electrolyte, for instance Pb in 5M HzSO4, no inductance is observed. These experimental 
observations are in favour of the geometrical origin of the self-inductance. At least, the inductance 
observed can hardly be related to physical properties of the electrolyte itself. 

Sathyanarayana et al. [6] claimed that the inductance observed on a Ni-Cd battery is due to the 
ferromagnetism of Ni, whereas on a Pb-H2SO4 battery, the same phenomenon is attributed to the 
porous texture of the electrode without any detailed explanation [7]. The impedance of a porous 
electrode was studied by de Levie [10] on the basis of a model describing the potential distribution in 
the pore. He showed that if an inductance were observed in a porous electrode, the interfacial 
impedance on a fiat electrode should also be inductive. Thus, according to this study, the porous 
structure alone cannot give rise to an inductive impedance. 

Hampson et al. [8, 11-13] repeatedly attributed the origin of this inductive behaviour to the 
�9 occurrence of reactions within pores on the basis of two theoretical papers by Darby [ 14, 15]. The 
latter calculated the Faradaic impedance of a porous gas-diffusion electrode. Unfortunately, the 
derivation given by Darby is basically incorrect and the inductive impedance may have been mistakenly 
interpreted in terms of the porous electrode. Based on the same hypotheses used by Darby, the 
calculation was remade [16]. 

Initially a first order reaction in a finite pore length is considered. Then the case of semi-infinite pore 
length is examined as a particular case of the model. An nth order interfacial reaction is analysed. 
Finally, the applicability of the model to the impedance of battery electrodes is briefly discussed. 

2. The model 

2.1. First order reaction and f ini te  pore depth 

The model elaborated by Darby [ 14] dealt with a concentration distribution in a porous gas-diffusion 
electrode. However, the concentration of reacting species at the gas-liquid interface is determined by 
an equilibrium law. The diffusion of reacting species in the gaseous phase is much faster than in the liquid 
phase and no charge transfer takes place at the gas-electrode interface. Consequently, the reaction rate 
and the electrode impedance are completely determined by the diffusion in the liquid phase. The model 
reduces therefore to the simple situation examined below. It is assumed that an electrochemical process: 

S ~ P + z e -  
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takes place on the walls of the porous electrode. S is a reaction species, z is the number of elementary 
charges transferred in this reaction and P is a reaction product. When the reaction progresses, the concen- 
tration C(x) of S inside pores damps down as a function of x, the distance from the pore aperture. L is 
the thickness of the porous electrode (0 ~< x ~< L). 

In the presence of a supporting electrolyte, Fick's Second law allows the expression of the one- 
dimensional concentration profile 

~C 32C 
~-'7 = D~-~x2-- K C  (1) 

where D is the diffusion coefficient and K can be regarded as a pseudo-homogeneous rate constant 
accounting for the consumption of S on the pore walls. K is to be linked to the heterogeneous electro- 
chemical rate constant K* by 

K = SpK* (2) 

where Sp is the developed surface area of the porous electrode per unit volume. Since an electrochemical 
process is considered, K* and hence K are both potential dependent. Two boundary conditions should 
be introduced with Equation 1. 

At x = 0, C(x) = Co the concentration in the solution bulk; at x = L, dC(x) /dx  = 0. I t  may be 
worth emphasizing that the concentration distribution is axial, that is, perpendicular to the porous 
electrode surface, and no radial distribution perpendicular to the electrode wall inside the pore is con- 
sidered. This contrasts with the application of the model developed by de Levie [ 10] to a Warburg 
impedance, in which case the concentration distribution is supposed to be radial whereas the potential 
distribution is axial. Neglecting ohmic effects and the radial gradient of concentration with respect to 
the axial one, the model can be considered as relevant to a narrow pore in the absence of forced convec- 
tion and flooded with a highly conductive electrolyte [17]. 

2.1.1. Steady-state flow. At the steady-state, that is, once the concentration profile is established, C(x) 
depends no longer on time. Thus, the left-hand term of Equation 1 is equal to zero. This allows calcu- 
lation of the concentration profile as a function ofx.  

cosh [ ( x  - L)(K/D) 1/2] 
C(x) = Co cosh [L(K/D) v21 (3) 

The flow of S at the pore aperture is equal to the overall rate of consumption of S inside the pores at 
steady-state and can be derived from the concentration gradient at x = 0, hence 

{ac\ 
�9 o = 

= Co(KD) v2 tanh [L(K/D) v21 (4) 

The overall consumption of S inside the pores can be equally calculated by integrating the reaction rate 
on the pore wall from aperture to bottom as follows: 

~bo = fLKC(x) dx 
. J o  

KCo L 
= i cosh [(x -- L)(K/D) 1/21 dx 

cosh [L(K/D ) v2] ~ o 

= Co (KD) m tanh [L(K/D) v2] (5) 

It can be verified that Equations 4 and 5 yield the same results. The steady-state current per unit surface 
of pore aperture can be then calculated using Faraday's Law: 
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Is, = zFOo = zFCo(KD) in tanh [L(K/D) in] (6) 

2.1.2 Faradaic impedance. As was shown above, at steady-state, the consumption of S inside the pores is 
equal to the flow of this species at the pore aperture. However, this is no longer valid at non-steady-state, 
since the concentration of reacting species is time and space dependent inside the pores following Fick's 
Second law. Darby's derivation (Equation 17 in [14]) was incorrect on this point and misleadingly used 
Equation 4 for the calculation of the Faradaic impedance. In fact, this procedure is correct for a 
potential distribution problem [ 10] provided a quasi-stationary situation is considered in the sense 
of Maxwell's equations. It would, however, be recalled that Darby's work was a pioneering one in the 
calculation of Faradaic impedance of porous electrodes and hence at that time the problem was poorly 
defined. Other hypotheses used in the model remain perfectly valid and are used in this paper. 

In order to determine the electrode impedance, the system under investigation is submitted to a small 
perturbing signal around its steady-state. The response can be derived from the Taylor expansion of 
Equation 1 limited to first order terms: 

dAC 3~AC , 
dt - D-~-x: -- K A C - -  K C ( x ) A E  (7) 

where K ' =  dK/dE.  If a sine wave voltage perturbation is used: 

AE = IAE[ exp (jcot) (8) 

where I AEI is the amplitude of the a.c. signal and co is its angular frequency. The concentration change 
also follows a sine wave modulation provided that 12xEI is small enough, i.e. the system deviation 
remains in the linear domain. Equation 7 can be rewritten as: 

32AC 
jcoAC = D--~x 2 - K A C - -  K ' C ( x ) A E  (9) 

Solutions of Equation 9 are of the form: 

AC = IAC[ e x p ( j w t ) F ( x )  (10) 

Combining Equations 8-10 yields: 

(K + jco)12xClf(x) = DIACI - 

Equation 11 can be expressed by: 

where 

~x 2 
K'C(x)  IAEI (11) 

AF"(x)  - BF(x)  = g(x)  

A = DlSxCl 

B = (K+jco)[AC[ 

g(x)  = K'C(x) IAEI  

the  general form of the solution to Equation 12 when g(x)  = 0 is: 

F(x)  = p exp x \ ~  + q exp x 

A particular solution of the complete equation is expressed by: 

C(x)K'[AEI  K'C(x)  IAE[ 
Fo(x) - 

A K / D - -  B j w  I~CI 

(12) 

(13) 

(14) 

Then the general solution can be written as: 
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[__ (~ ) l a ]  [ ( , 4 )  ln] K'C(x) IAE[ (15) 
F(x) = p exp a + q exp a joe IACI 

The boundary condition for x = 0 gives: 

CoK'[AE[ 
AC = 0 a t x  = 0hence p + q  jcoIAC[ - 0 (16) 

and 
[ [B~1/21 

dAC/dx = 0 a t x  = L gives p-- : exp[2L[z-]  [ (17) 
q [ \  A/  J 

Equations 16, 17 allow the calculation ofp  and q and yield: 

F(x) - K'ColAxEIjcolACi [-[c~ c~ (lg) 

At the abscissa x, the local impedance, Zx, per unit pore length and per unit surface of pure aperture is 

zxl = zFs = zF(K'C(x)-- + KF(x)[--~I)IAC[ (19) 

The total impedance is calculated by summing the local contribution of Zx over the whole pore length: 

1 _ 1_ fZ,._.l_l dx 
zFZ zF J'o Z x 

: g'f oC(X)dx +KK'Co t-@osh (x -- L)(B/A) cosh (x -  L)(K/D) 
joe Jo [ coshL(B/A) 1/2 c o ~ ~  ] dx (20) 

and finally for the impedance of the pore: 

1 - K'Co(D/K) m tanh L(K/D) '/2 + KK'Co zFZ jco [(A/B)m tanh (B/A) 1/2 -- (D/K) v2 tanh (K/D) v2] 
(21) 

The particular case of a semi-infinite pore length can be easily examined by setting L -+ ~ in Equation 
21. One has for the limiting value Z of the impedance: 

1 = K,Co(D/K)I/2 + KK'Co [(A/B)v2 - (D/K)I/2 ] (22) 
zFZ~ j~ 

Limiting cases as co -+ 0 and co -+ oo are of interest for predicting the size of the impedance diagram. For 
a semi-infinite pore length the low frequency limit of the impedance (polarization resistance Rp) is twice 
as great as the high frequency limit (charge transfer resistance Rt). 

Rp = 2R t. (23) 

This relation holds whatever the kinetic law of the electrochemical process K(E). This result is clearly 
the impedance counterpart of the doubling of the Tafel slope under ohmic or diffusion control 
established by Austin and Lerner [17]. 

In the case of a finite pore length it can be shown analytically [16] that Rp ~ 2Rv 

2.2. Case of non-first-order kinetics 

This case was also treated by Darby [15] but the derivation was also incorrect for the same reason as 
shown above. The electrochemical process can be written as 

n S - * P + z e -  
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The concentration profile at steady state is: 

d2C 
D -d--xx 2 K C n 

Integration of Equation 24 is performed by setting dC/dx = s 

d2C ds ds dC 

dx 2 dx dC dx 
A first integration gives: 

_ _  (aci  S2 = 2~KD yCndC+P' \ d x ]  

and a second integration: 
dC 

x + P ~  = 
(2KIDCn+'t'/2 

r l  and I"2 are integration constants. 

(24) 

(25) 

(26) 

(27) 

If F1 is not equal to zero, the equation has, in general, no analytical solution. The case considered by 
Darby [15] corresponds to Pl = 0 consistent with C and dC/dx -+ 0 as x -+ ~o (semi infinite pore length). 
The boundary condition at x = 0, C = Co determines P2 and allows us to obtain: 

C(x) = Co x ( n - - 1 )  2D(n + l) + 1 (28) 

The penetration depth can no longer be defined in this nonlinear case. The concentration profile 
depends on Co. As recognized by Darby [15] the electrode impedance cannot be calculated analytically. 
Nevertheless one can evaluate the values of Rt and Rp. 

As above, the local impedance Z x is given by: 

1 - K'C n + KnC n-1 I ACIF(x )  (29) 
zFZx I AEI 

(I ACI/I AEI )F(x )  tends to zero as co ~ ~o, thus the charge transfer resistance is equal to: 

1 
- K ' f = C  n dx (30) 

zFRt  Jo 

Substituting C n from Equation 24, yields: 

1 2zFK'C~-n/2 2K(n + 1) (31) 
Rt 

The polarization resistance calculated from the steady-state current voltage equation yields: 

Rp g + 1) (32) 

Therefore Equations 31, 32 show that even with a reaction order different from one, Rp = 2R, is 
fulfilled for a semi-infinite pore length. 

3. Results of numerical simulation 

?~.l. Steady-state 

The shape of the complex impedance diagram generated by Equation 21 cannot be established 
analytically. Therefore numerical simulations were performed. A Tafel law was assumed to control the 
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Fig. 1. Polarization curve of 
porous electrode. The constants 
used are: C o = 5 X I0-3 mol 
cm-3; D = 1 X 10 -~ cm 2 s-l: 
z = l ; K = l  X 10-3exp (19.2E) 
s -1. The thicknesses of the 
porous electrodes are: (1) 0.4; 
(2) 4 and (4) 40 mm. On the 
right ordinand-axis, the dis- 
charge rate for the Pb-battery 
is shown. The scale is given in 
the ratio of d.c. current flow 
over that corresponding to a 
complete discharge of the 
battery within 10 h. 

potent ia l  dependence of  the rate constant :  

K* = K~'exp (bE) (33)  

where the Tafel exponen t  b lies be tween  0 and 3 8 . 4 V  -1 for z = 1. 

The pseudo-homogeneous  rate cons tant  is deduced according to Equa t ion  2. Fig. 1 depicts the 

steady-state flow of  S for three different  values of  L: 0.4, 4 and 40 mm. One can distinguish two ranges 

of  electrode kinetics.  At  low anodic overvoltages (low react ion rate) the Tafel slope has the same value 
as on  a flat electrode chosen for the numerical  computa t ion  (120 mV decade -z) whereas at high over- 

voltages (high react ion rate) the Tafel slope is twice as great. This behaviour  was first po in ted  out  by  
Aust in  and Lerner [ 17]. The deeper the pore structure,  the lower is the potent ia l  of  t ransi t ion from the 

flat electrode regime to the porous  one. This classical result is substant ia ted by  the concent ra t ion  
profiles shown in Fig. 2 for L = 4 m m  at various electrode potent ials  in a range covering the t ransi t ion 

region in Fig. 1, Curve 2. At  low overvoltages the diffusion is fast enough to supply the reacting species 
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Fig. 2. Reduced concentration profile for 
different reaction rates for L = 4 ram. 
(1) E = - -  0.18V, Ist = 5.27 mAcm-~; 
(2) E = - -  0.12 V, Ist = 13.0 mA cm-2; 
(3) E = -- 0.06 V, Ist = 26.5 mA cm-2; 
(4) E = 0 V, Ist = 48.2 mA cm-~; 
( 5 ) E =  0.06 V, Is~ = 85.8 mA cm-2 and 
( 6 ) E =  0.12V, Ist = 153 mA crn-L Other 
constants are shown in Fig. 1. 
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up to the botton~ of  the pore (flat electrode regime). At high overvoltages the electrode behaves like a 
semi-infinite pore. 

Inversely, Fig. 4 shows concentration profiles for various L at a constant potential.  In the same 

figure is also presented the ratio IL/I~ = tanh (L/X) according to Equation 6 for the ratio of current 
for the actual pore length IL to that  of  the semi-infinite pore I=. 

3.2. Impedance  

An impedance diagram calculated for E -- 0.12 V is shown in Fig. 3. This diagram corresponds to a 
semi-infinite pore. I t  can be verified in agreement with analytical prediction that  Rp = 2R t. The double 
layer capacitance in parallel with the charge transfer resistance gives rise to the semi-circle shown as a 
broken line. A clear separation of  the charge transfer and diffusion arcs is ensured by the very small 
double layer capacitance. Large specific areas of ' the porous material will lead to a frequency shift 
towards lower frequencies and to a serious overlapping with the diffusion arc. 

The contribution of  the axial diffusion appears as a nearly perfect semicircle. This was not  obvious 
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Fig. 4. Reduced concentration profile 
for different L. The pore thickness is 
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state current for finite pore length 1 L 
over that of the semi-infinite pore I .  
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showing the low frequency range 
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the  diffusion process. R t is the  
charge transfer for each potential  
(1) E = - -  0.18 V; (2) E = - -  0.12 V; 
(3) E = - -  0.06 V; (4) E = 0 V. 

from the analytical expression. It can also be noted that very low frequencies are implied in spite of 
the relatively high current density (0.t 5 A cm-2). As can be seen from Equation 21 the time constant for 
the admittance plane is close to K. 

Fig. 5 shows in a reduced formZ/R t, the change of impedance with respect to reaction rate. The 
smaller the reaction rate, the smaller is the relative size of the diffusion loop as the electrode behaviour 
approaches that of a fiat electrode. The diffusion loops remain practically similar in shape. This is 
illustrated in Fig. 6 in the Bode plane (log lZI, log f )  at two different over-voltages, two different 
impedance scales are used. These plots indicate more clearly the similarity of the diffusion loops and also 
their frequency shift. For comparison, the impedance of a dummy cell, shown in the insert, is also plotted 
as a broken line. Only a slight difference is observed between 2 x 10 -4 and 5 x 10-3Hz. Fig. 7 illustrates 
in a somewhat different way, the result shown in Fig. 5. The variation of the product RpIst commonly 
used as a kinetic criterion is of special interest. It shows a very steep transition from the fiat electrode 
regime (52 mV) to the porous semi-infinite regime (104 mV). 

t'N 

E 
t) 
E 115 

~" 11.0i 

8 IZ 10.5 

Z 
'~ 10.0 r~ 
Ld 
EL 10- 

0 -5 10 -4 
I 

10 -3 10 -2 10 -1 
I I 

0.7 
�9 6 0 F  

0.6 

0.5 

0.4 

I I I 

10 -5  10 -4  10 -3  10 -2  

F R E Q U E N C Y , /  H z  

Fig. 6. Bode plot of  the electrode 
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d u m m y  cell giving the  impedance close 
to Curve 2. 
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4. Discussion in the framework of battery electrodes 

A correct derivation of the impedance arising from an axial concentration gradient in a one-dimensional 
porous structure and with negligible ohmic effect gives no inductance at all. Therefore, the use of this 
model for interpreting high frequency inductive behaviour observed on many battery electrodes is 
totally irrelevant. 

In agreement with previous studies of this model at steady-state the limitation by diffusion of the 
overall current through the porous structure is only partial. The polarization resistance is at most twice 
the charge transfer resistance. As shown in Fig. 4 the frequency range covered by the diffusion 
dependent part of the impedance is very low (millihertz range). According to Equation 21 this frequency 
range depends on K. This situation is very similar to the Faradaic impedance related to an homogeneous 
chemical reaction in the diffusion layer [18]. It contrasts with the usual diffusion impedance on a flat 
electrode for which the characteristic frequency is fixed by 62/D, 6 being the thickness of the Nernst 
diffusion layer. In the case of an impedance tied to a heterogeneous reaction on a flat electrode the 
relaxation frequency is linked to the reaction rate. 

The validity of the assumptions regarding the predominance of the axial gradient and the negligible 
effect of ohmic drop can be assessed in the case of an actual Pb-H2SO4 battery. Bode [19] indicated 
that lead sulphate precipitation is limited to the vicinity of the porous electrode surface at high 
discharge rate. The penetration depth was estimated to be 0.2 mm at a discharge current density of 
180 mA cm -2. If the pore texture is assumed constant over the whole electrode thickness, the current 
density can be related to the discharge rate as shown in Fig. 1. The total surface of pore aperture S a 
can be evaluated with the porosity o~ and the geometrical surface area So: 

S a = aSo (34) 

Let the apparent current density be I, then Ist can be calculated by: 

I zFCo (KD)I/2 
I s t  = - - ( 3 5 )  

where z stands for the charge transfer number. From Equation 35 one obtains the penetration depth, X 

X =  I 

By using values o fD  = 1 x 10 -s cm 2 s -1, Co = 5 x 10 -3 and z = 2, one calculates X = 0.6 mm 
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at I = 180 mA cm -2. This value is slightly greater than that observed experimentally, but remains in the 

correct order of  magnitude. 
The electrolyte resistance, through the porous electrode per unit pore length and per unit geometrical 

surface can be calculated by: 
R e = ,O/Or (37) 

where p indicates the electrolyte resistivity. The ohmic drop U under d.c. polarization for the penetra- 
tion depth X is thus: 

U = I R e X  = z C o F D p  ~-- 13mV (38) 

with p = 1.3 ohm cm whatever the current density. That is, the ohmic drop of  the d.c. polarization is 
negligible. 

For the impedance diagram, the penetration depth of the a.c. signal/a should be taken into con- 
sideration. Though the actual electrode has an intricate pore texture, the potential distribution can be 
correctly expressed by an equivalent cylindrical pore model [20, 21]. I f  the impedance at the developed 
surface is reduced to that due to the double layer capacitance C a (at sufficiently high frequency this is 
usually true),/a can be calculated by [22]: 

1 " r , m  

If  it is assumed that r = O. 1/am and Co = 20/aF cm -~, one evaluates/a = X = 0.2 mm, f = 0.5 Hz. 
In other words the potential distribution may affect the impedance diagram on the rather high 

frequency side with the respect to the diffusion contribution. 

5. Conclusion 

The model proposed by Darby [ 14, 15] of axial diffusion in a cylindrical pore and no ohmic effect 
cannot be invoked to explain the inductive behaviour of  porous electrode. Correctly derived, the 
impedance linked to this description is consistent with the steady-state treatment. Estimation of  the 
concentration gradient and potential distribution indicates that the model can be representative of the 
situation in lead acid battery electrodes. Calculation of  the impedance of porous structures under mixed 
control by potential and concentration is presently in progress. 
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